

Why ZMPE When You Can MUPE?

6th Joint ISPA/SCEA Conference

Dr. Shu-Ping Hu and Alfred Smith

12 - 15 June 2007

Mission

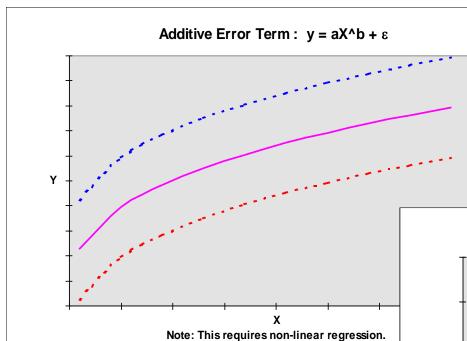
- Find a regression method to fit a multiplicative CER in unit space directly (avoid transformations) and without bias
- Examine the goodness-of-fit measures to determine if the regression equation and coefficients are significant
- Interpret the CER result and use a validated and already implemented method to compute prediction intervals (PI) for cost uncertainty analysis
 - Regardless of the CER methodologies, it is very important that the user knows (1) the CER result meaning and (2) how the error should be modeled.

TECOLOTE RESEARCH, INC.

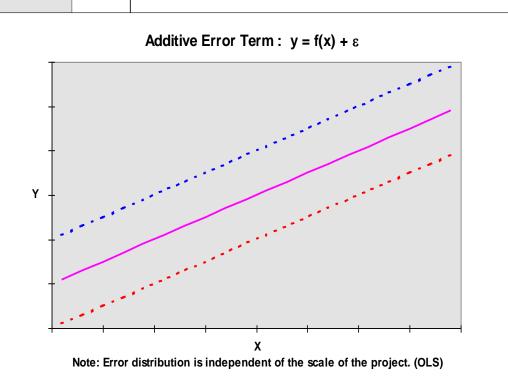
Outline

- Mission
- Introduction/Background
 - Error Term Assumption (Additive vs. Multiplicative)
 - Multiplicative Error Models: Log-Error, MUPE, ZPB/MPE (ZMPE)
- Properties of MUPE and ZMPE CERs
- Common pros and cons of using MUPE and ZMPE
- Bad news about ZMPE CERs
- A Ground Antenna Example
- Good news about MUPE CERs
- Conclusions

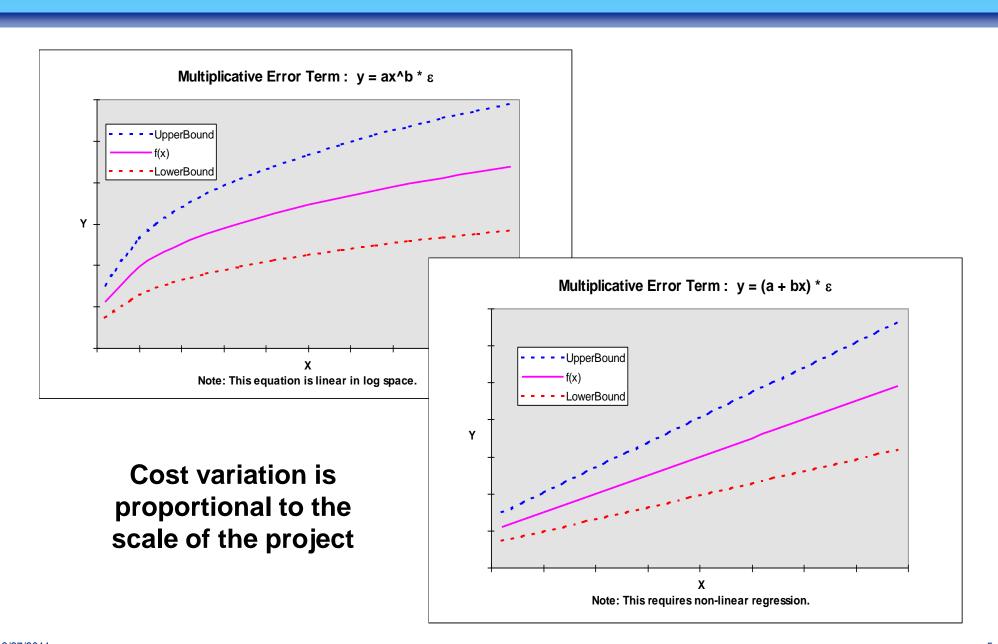
Additive Error Term



Cost variation is independent of the scale of the project



TECOLOTE RESEARCH, INC. Multiplicative Error Term



Multiplicative Error Models – Log-Error, MUPE, & ZMPE

Definition of error term for $Y = f(x)^* \epsilon$

- Log-Error: $\varepsilon \sim LN(0, \sigma^2)$ \Rightarrow Least squares in log space
 - Error = Log (Y) Log f(X)
 - Minimize the sum of squared errors; process done in log space
- MUPE: $E(\varepsilon) = 1$, $V(\varepsilon) = \sigma^2 \Rightarrow Least squares in weighted space$
 - Error = (Y-f(X)) / f(X)
 - Minimize the sum of squared (percentage) errors iteratively

Note: E((Y-f(x)) / f(x)) = 0
V((Y-f(x)) / f(x)) =
$$\sigma^2$$

- ZMPE: $E(\varepsilon) = 1$, $V(\varepsilon) = \sigma^2 \Rightarrow Least squares in weighted space$
 - Error = (Y-f(X)) / f(X)
 - Minimize the sum of squared (percentage) errors with a constraint

MUPE and ZMPE Methods

- Two methods to perform the optimization for the weighted least squares using the <u>predicted</u> value, not the actual, as the basis. Sample percentage bias removed in both methods
 - MUPE

 ⇒ bias eliminated by fixing the denominator in IRLS

$$Minimize \sum_{i=1}^{n} \left(\frac{y_i - f(x_i)}{f_{k-1}(x_i)} \right)^2$$

where *k* is the iteration number

• **ZMPE** ⇒ sample bias eliminated through a constrained minimization process

$$Minimize \sum_{i=1}^{n} \left(\frac{y_i - f(x_i)}{f(x_i)} \right)^2$$

Subject to
$$\sum_{i=1}^{n} \left(\frac{y_i - f(x_i)}{f(x_i)} \right) = 0$$

Properties of MUPE and ZMPE Methods (1/3)

Both methods have zero percentage bias (ZPB) for the sample data points:

$$\frac{1}{n}\sum_{i=1}^{n}\frac{y_i-\hat{y}_i}{\hat{y}_i}=0$$

- For MUPE, this condition is derived through the minimization process, which can be proved mathematically
- For ZMPE, ZPB is obtained by using a constraint
- If a CER is unbiased then \Rightarrow E(\hat{Y}) = E(Y) = f(X,β)

i.e., the mean of the predicted CER is the hypothetical equation

- Does "ZPB" imply that the CER is unbiased?
 - The answer is NO
 - The ZPB constraint can be applied to any proposed methodologies (i.e., objective functions), but this is no guarantee that the CER result will be unbiased, i.e., this condition "E($\hat{\mathbf{Y}}$) = f(X, β)" may not be true

Properties of MUPE and ZMPE Methods (2/3)

- The ZMPE method has a smaller standard percent error (SPE), i.e., multiplicative error, when compared to MUPE
 - $SPE_{(ZMPE)} \leq SPE_{(MUPE)}$

SPE = %SEE =
$$\sqrt{\frac{1}{n-p} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{\hat{y}_i}\right)^2}$$

- Is ZMPE's SPE an unbiased estimator of σ^2 ? ($\sigma^2 = V(\epsilon)$)
 - Is a smaller SPE better?
 - ▶ If so, then we should develop MPE CERs
 - Do we know the statistical meaning of ZMPE's SPE?
 - Do we know the statistical interpretation of the ZMPE CER?
 Is it mean, median, mode, or what?

Properties of MUPE and ZMPE Methods (3/3)

- For linear CERs, such as Y = (a + bX + cZ)*ε, the MUPE method produces unbiased estimates of the function mean, i.e., E(Ŷ) = E(Y) = a + bX + cZ; the ZMPE method may not
 - MUPE produces the best linear unbiased estimator (**BLUE**) of the parameters, a, b, and c and, consequently, BLUE of the function mean (under **no** distribution assumptions). See Ref 7 for details
 - ZMPE's estimated parameters are different from MUPE; they are certainly **not** BLUE
- The MUPE CER produces consistent estimates of the parameters and the mean of the equation
 - For non-linear CERs, unbiased estimates of the CER mean in general cannot be derived; the best to be found is consistency
- MUPE's parameter estimators are also the maximum likelihood estimators (MLE) of the parameters
- We do not know the statistical properties of the ZMPE CER, but we know that the statement "ZMPE is unbiased" has NOT been proven, even for a linear CER

Common Pros and Cons for MUPE and ZMPE

- Both MUPE and ZMPE CERs have "zero percentage bias" for all points in the data set (no sample bias)
- Both methods require no transformation and no correction factor adjustment to the CER result
- Both rely on nonlinear regression technique to derive a solution
- Both methods do not always converge, especially when regressing learning curves

Bad News About ZMPE for CER Development

The ZMPE method is a constrained minimization process

- The ZMPE CER appears to get trapped in local minima more often than the corresponding MUPE CER
 - Optimizers (i.e. Solver) are sensitive to the starting points for ZMPE, especially when regressing complicated non-linear equations
- The ZMPE equations are found be less stable than the MUPE ones, especially for small samples
- Difficult to examine whether the calibrated coefficients are significant or not
 - Optimizers generally do **not** provide any goodness-of-fit measures to the fitted regression equation other than SPE, which is simply based upon the objective function
 - SPE and Pearson's r² are insufficient
 - > to determine if a ZMPE, a MUPE or a non-linear CER is significant, or
 - for detecting CER model flaws (see chart 14)

Bad News About ZMPE for Uncertainty Analysis

- No objective interpretation of the ZMPE CER
 - Difficult to interpret ZMPE CERs Mean, Median, Mode, or What?
- Prediction intervals (PI) not readily available
- Although the Bootstrap method was suggested to construct PI bounds on the CERs, several shortcomings were reported in Reference 1, for instance:
 - The actual implementation of the Bootstrap method to develop PI bounds could be tedious. For non-linear CERs, such as Triad (y=a+bx^c+dz^e), the process involves fitting <u>hundreds</u> of non-linear equations. Some of them may not converge or may be trapped in local minima, especially when the sample size is small
 - The Bootstrap sampling may not provide representative samples of the error distribution for small samples (see References 1 and 3)
 - The Bootstrap-based PI bounds were observed to be narrower than expected and not centered on the CER result for factor and linear equations. See Reference 1 for examples.

A Ground Antenna Example from Ref 2 (1/5)

Data Set (see reference below):

Y: Cost (FY99\$K)	3.595	1.900	3.300	10.900	15.434	16.074	17.274
X: Diameter (feet)	7.900	8.200	9.800	11.500	16.400	19.700	23.600

CERs and Stats:

Method	CER	SPE	Pearson's r ²	Note
MUPE:	(-28.45) + 13.49 * X ^{0.404}	40.5%	89.5%	y < 0 if x < 6.34
ZMPE #1:	(-236.11) + 212.42 * X ^{0.06}	39.5%	91.4%	y < 0 if $x < 5.82$
ZMPE #2:	75.661 + (-111.258) * X ^{-0.2047}	39.4%	92.3%	y < 0 if $x < 6.57$

Not sufficient using SPE and Pearson's r²

- It can be risky when selecting a CER solely based upon SPE and Pearson's r², especially when predicting outside the data range
- We cannot interpret ZMPE CER and its SPE; this measure does not help identify the flaws in the CERs. (ZMPE CER #2 is totally absurd)
- Use approximated std errors of the coefs to evaluate CERs

Ref: Book, S., "IRLS/MUPE CERs Are Not MPE-ZPB CERs," 2006 Annual ISPA International Conference, Seattle, WA, 23-26 May 2006

A Ground Antenna Example CO\$TAT Output (2/5)

I. Equation Form & Error Term

Model Form: Weighted Non-Linear Model	
Non-Linear Equation:	Y = (-28.45) + 13.49 * X ^ 0.404
Error Term:	MUPE (Minimum-Unbiased-Percentage Error)
Minimization Method:	Downhill Simplex

II. Fit Measures

Coefficient Statistics Summary

Variable/Term	Coefficient Estimate	Approximate Std Error	Approximate Lower 95% Confidence	Approximate Upper 95% Confidence
Fixed_Cost	-28.4544		-428.4365	
а	13.4852	106.4782	-282.3113	309.2817
b	0.4040	1.5859	-4.0016	4.8096

Least Squares Minimization Summary Statistics

Source	DF	Sum of Squares (SS)	Mean SQ = SS/DF
Residual (Error)	4	0.6551	0.1638
Total (Corrected)	6	3.0113	

Goodness-of-Fit Statistics

Ctd	Approx. R-	Approx. R-
Std. Error (SE)	Squared	Squared (Adj)
0.4047	78.24%	67.37%

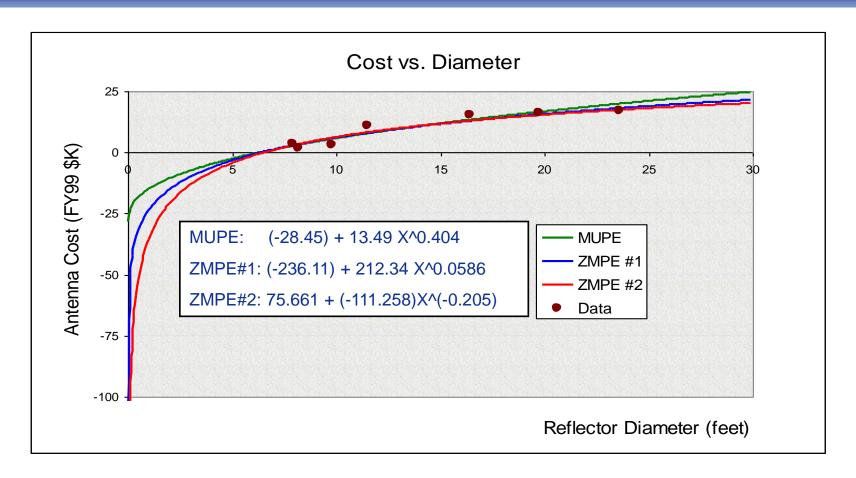
Approximate Correlation Matrix of the Coefficients

Correlation	Coef 1	Coef 2	Coef 3
Coef 1	1.0000	-0.9997	0.9982
Coef 2	-0.9997	1.0000	-0.9994
Coef 3	0.9982	-0.9994	1.0000

- 1. Systat produces very similar results
- 2. This CER should be rejected based upon the estimated std error of the coef

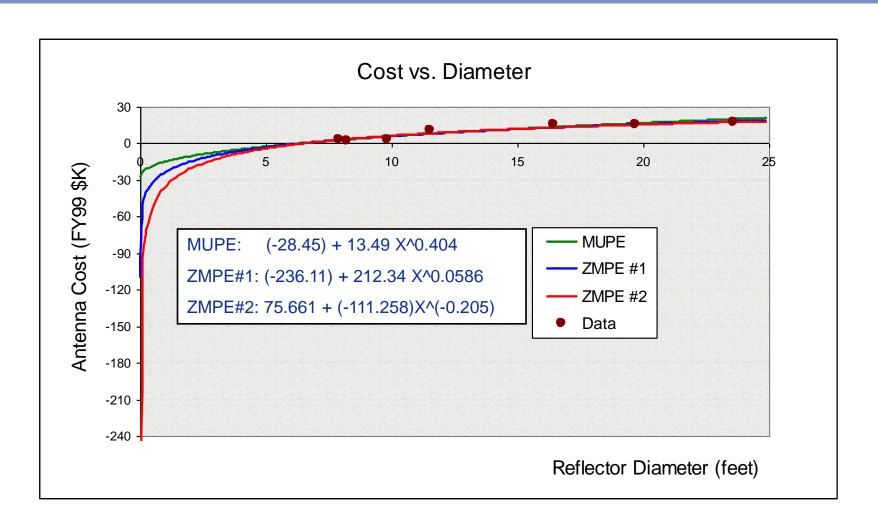
2/27/2011

A Ground Antenna Example Scatter Plot (3/5)



- 1. Over the data range, all three CERs are similar and appear to be normal
- 2. ZMPE CER #2 closely follows ZMPE CER#1 even beyond the data range
- 3. Note that when using 2 significant digits rather than four for the coefficients, ZMPE CER #1 is biased high by **21**%

A Ground Antenna Example Scatter Plot (4/5)



- 1. This graph plots the CERs and the data points from "0" to 25 feet diameter
- 2. It shows the peculiarities of the triad equation

17

A Ground Antenna Example from Ref 2 - Summary (5/5)

ZMPE: Cost = -236.11 + 212.42 X 0.0586

MUPE: Cost = $-28.45 + 13.49 \times 10^{0.404}$

- It makes no sense to have a negative set-up cost in the equation
- The ZMPE CER will generate a negative cost when the reflector has a diameter less than 5.82 feet (for MUPE, the threshold is 6.34 feet)
- The coefficients generated by the MUPE method are insignificant based upon the approximated standard errors of the coefficients (see the coefficient table in CO\$TAT output)
- For the Triad MUPE CER, the fixed cost term (-28.45) is competing against the scale parameter (13.49) of the equation; the fixed cost term is also almost perfectly correlated with the exponent. (See the correlation matrix of the coefficients)
- When using two significant digits for the exponent, as suggested by Figure 10 of Ref 2, the ZMPE equation is biased high by **21**%. This also indicates that the ZMPE equation is not stable
- Neither Pearson's r² nor SPE can detect the flaws in this triad model

What About Large Samples?

- No significant differences found between MUPE and ZMPE CERs for large data sets
 - ZMPE and MUPE CERs are quite close to each other for large samples generated by simulation runs
- Goodness-of-fit measures still not available for ZMPE CERs
 - SPE and Pearson's r² are not sufficient; it can be risky to evaluate ZMPE CERs based upon their SPE and Pearson's r²
- It takes extra effort to generate and validate the Bootstrapbased PIs for cost uncertainty analysis
 - The Bootstrap sampling should provide representative samples of the error distribution for large samples. However, the Bootstrap-based PI bounds (i.e., Bootstrap Bound SEE) should be validated (Ref 1, 3 & 4)
 - There may be a **consistency** issue when users are specifying PIs at different probability levels, e.g., (15th,85th) or (20th,80th) vs. (10th,90th)

Good News About MUPE

- Approximated standard errors of the coefficients can be applied to judge the quality of the regression coefficients under the normality assumption
- The MUPE CER produces consistent estimates of the parameters and the mean of the equation
 - MUPE CERs estimate the mean of the function for linear CERs
 - For non-linear CERs, the best to be found is consistency
- The MUPE estimated parameters are the maximum likelihood estimators (MLE) of the parameters (see References 5, 6, 8)
- The PIs for MUPE CERs (as well as non-linear CERs) can be found in several statistical packages, including SAS, Statistica, and CO\$TAT

Conclusions

- Besides the common pros and cons, MUPE (not ZMPE)
 offers informative and useful statistics
 - It provides consistent estimates of the parameters and the CER mean; it is BLUE for linear models
 - It provides (asymptotic) goodness-of-fit measures for evaluating CER coefficients
 - Its PI is readily available for cost uncertainty analysis (see SAS, Statistica, and CO\$TAT)
- Shortcomings found for ZMPE if sample size is small (<15)
 - The ZMPE CER appears to be trapped in local minima more often than the corresponding MUPE CER
 - The ZMPE equations are found to be less stable than the MUPE ones and more sensitive to the starting points
- While no significant differences found between MUPE and ZMPE CERs for large data sets, MUPE is the better one!
 - ZMPE does not offer CER meaning, goodness-of-fit measures, or PIs
 - SPE and Pearson's r² cannot help detect the model flaws

References

- 1. Hu, S., "Prediction Interval Analysis for Nonlinear Equations," 2006 Annual SCEA National Conference, Tysons Corner, VA, 13-16 June 2006
- 2. Book, S., "IRLS/MUPE CERs are Not MPE-ZPB CERs," 2006 Annual ISPA International Conference, Seattle, WA, 23-26 May 2006
- 3. Book, S., "Prediction Bounds for General-Error-Regression CERs," 39th DoDCAS, Williamsburg VA, 14-17 February 2006
- 4. Book, S., "Prediction Intervals for CER-Based Estimates (With Cost Driver Values Outside the Data Range)," 37th DoDCAS, Williamsburg, VA, 10-13 February 2004
- 5. Seber, G. A. F. and Wild, C. J., "Nonlinear Regression," John Wiley & Sons, Inc., 1989
- 6. Jørgensen, B., "Maximum Likelihood Estimation and Lare-Sample Inference for Generalized Linear and Nonlinear Regression Models," Biometrika, 70, pages 19-28, 1983
- 7. Draper, N. R. and Smith, H., "Applied Regression Analysis," 2nd Edition, John Wiley & Sons, 1981
- 8. Jennrich, R. I. and Moore, R. H., "Maximum Likelihood Estimation by Means of Nonlinear Least Squares," American Statistical Assoc., Proc. Statistical Computing Section, pages 57-65, 1975

Backup Slides

$$\sum_{i=1}^{n} ((y_i - \hat{y}_i) / \hat{y}_i) / n = 0$$

$$SPE = \sqrt{\sum_{i=1}^{n} ((y_i - \hat{y}_i) / \hat{y}_i)^2 / (n-p)}$$

Comparison between MPE and ZMPE

- For most equations (i.e., $Y = a X^bZ^c$, Y = a + bX + cZ, etc.)
 - Sensitivity coefficients (associated with the driver variables) are the same between MPE & ZMPE equations
 - Only leading term or level of function adjusted
 - Findings also proven by mathematical derivations
 - See reference below for details
- For triad equations (i.e., Y = a + b X^cZ^d)
 - All coefficients changed

Ref: Hu, S., "The Minimum-Unbiased-Percentage-Error (MUPE) Method in CER Development," 3rd Joint Annual ISPA/SCEA International Conference, Vienna, VA, 12-15 June 2001.